Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Marcelo, Alvin (Ed.)BackgroundIn light of recent retrospective studies revealing evidence of disparities in access to medical technology and of bias in measurements, this narrative review assesses digital determinants of health (DDoH) in both technologies and medical formulae that demonstrate either evidence of bias or suboptimal performance, identifies potential mechanisms behind such bias, and proposes potential methods or avenues that can guide future efforts to address these disparities. ApproachMechanisms are broadly grouped intophysical and biological biases(e.g., pulse oximetry, non-contact infrared thermometry [NCIT]),interaction of human factors and cultural practices(e.g., electroencephalography [EEG]), andinterpretation bias(e.g, pulmonary function tests [PFT], optical coherence tomography [OCT], and Humphrey visual field [HVF] testing). This review scope specifically excludes technologies incorporating artificial intelligence and machine learning. For each technology, we identify both clinical and research recommendations. ConclusionsMany of the DDoH mechanisms encountered in medical technologies and formulae result in lower accuracy or lower validity when applied to patients outside the initial scope of development or validation. Our clinical recommendations caution clinical users in completely trusting result validity and suggest correlating with other measurement modalities robust to the DDoH mechanism (e.g., arterial blood gas for pulse oximetry, core temperatures for NCIT). Our research recommendations suggest not only increasing diversity in development and validation, but also awareness in the modalities of diversity required (e.g., skin pigmentation for pulse oximetry but skin pigmentation and sex/hormonal variation for NCIT). By increasing diversity that better reflects patients in all scenarios of use, we can mitigate DDoH mechanisms and increase trust and validity in clinical practice and research.more » « less
-
Abstract Management of breast cancer in limited-resource settings is hindered by a lack of low-cost, logistically sustainable approaches toward molecular and cellular diagnostic pathology services that are needed to guide therapy. To address these limitations, we have developed a multimodal cellphone-based platform—the EpiView-D4—that can evaluate both cellular morphology and molecular expression of clinically relevant biomarkers directly from fine-needle aspiration (FNA) of breast tissue specimens within 1 h. The EpiView-D4 is comprised of two components: (1) an immunodiagnostic chip built upon a “non-fouling” polymer brush-coating (the “D4”) which quantifies expression of protein biomarkers directly from crude cell lysates, and (2) a custom cellphone-based optical microscope (“EpiView”) designed for imaging cytology preparations and D4 assay readout. As a proof-of-concept, we used the EpiView-D4 for assessment of human epidermal growth factor receptor-2 (HER2) expression and validated the performance using cancer cell lines, animal models, and human tissue specimens. We found that FNA cytology specimens (prepared in less than 5 min with rapid staining kits) imaged by the EpiView-D4 were adequate for assessment of lesional cellularity and tumor content. We also found our device could reliably distinguish between HER2 expression levels across multiple different cell lines and animal xenografts. In a pilot study with human tissue (n = 19), we were able to accurately categorize HER2-negative and HER2-positve tumors from FNA specimens. Taken together, the EpiView-D4 offers a promising alternative to invasive—and often unavailable—pathology services and may enable the democratization of effective breast cancer management in limited-resource settings.more » « less
An official website of the United States government
